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LETTER TO THE EDITOR

Explicit solution of the quantum three-body
Calogero–Sutherland model

A M Perelomov†§, E Ragoucy‡‖ and Ph Zaugg†
† Laboratoire de Physique Théorique LAPTH, Chemin de Bellevue, BP 110, 74941 Annecy-le-
Vieux Cedex, France
‡ Theory Division, CERN, 1211 Geneva 23, Switzerland

Received 26 May 1998

Abstract. The class of quantum integrable systems associated with root systems was introduced
by Olshanetsky and Perelomov as a generalization of the Calogero–Sutherland systems. It
was recently shown by one of the authors that for such systems with a potentialv(q) =
κ(κ − 1) sin−2 q, the series in the product of two wavefunctions is theκ-deformation of the
Clebsch–Gordan series. This yields recursion relations for the wavefunctions of those systems
and, related to them, for generalized zonal spherical functions on symmetric spaces.

In this letter this approach is used to compute the explicit expressions for the three-body
Calogero–Sutherland wavefunctions, which are the Jack polynomials. We conjecture that similar
results are also valid for the more general two-parameters deformation ((q, t)-deformation)
introduced by Macdonald.

1. Introduction

The class of quantum integrable systems associated with root systems was introduced in [1]
(see also [6]) as a generalization of the Calogero–Sutherland systems [2, 3]. Such systems
depend on one real parameterκ (for the typeAn,Dn andE6, E7, E8), on two parameters (for
the typeBn,Cn, F4 andG2) and on three parameters for the typeBCn. These parameters
are related to the coupling constants of the quantum system.

For special values of this parameterκ, the wavefunctions correspond to the characters
of the compact simple Lie groups (κ = 1) [7], or to zonal spherical functions on symmetric
spaces (κ = 1

2, 2, 4) [8, 9]. At arbitrary values ofκ, they provide an interpolation between
these objects.

This class has many remarkable properties. Let us only mention that the wavefunctions
of such systems are a natural generalization of special functions (hypergeometric functions)
to the case of several variables. The history of the problem and some results can be found
in [10]. It was recently shown in [4], that the product of two wavefunctions is a finite linear
combination of analogous functions, namely of functions that appear in the corresponding
Clebsch–Gordan series. In other words, this deformation (κ-deformation) does not change
the Clebsch–Gordan series. For rank 1, one obtains the well known cases of the Legendre,
Gegenbauer and Jacobi polynomials and the limiting cases of the Laguerre and Hermite
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polynomials (see for example [11]). Other cases were also considered in [12–18, 5, 19, 20].
In this letter we use this property in order to obtain the explicit expressions for the Jack
polynomials† of type A2 which give the solution of the three-body Calogero–Sutherland
model. For special values ofκ = 1

2, 2, 4 we obtain the explicit expressions for zonal
polynomials of typeA2.

We conjecture that these results remain valid for the Macdonald polynomials of type
A2 [5] and this will be the subject of a separate communication [21].

2. General description

The systems under consideration are described by the Hamiltonian (for more details see
[10]):

H = 1
2p

2+ U(q) p2 = (p, p) =
l∑

j=1

p2
j (2.1)

wherep = (p1, . . . , pl), pj = −i ∂
∂qj

, is a momentum vector operator, andq = (q1, . . . , ql)

is a coordinate vector in thel-dimensional vector spaceV ∼ Rl with standard scalar
product (α, q). They are a generalization of the Calogero–Sutherland systems [2, 3] for
which {α} = {ei − ej }, {ej } being a standard basis inV . The potentialU(q) is constructed
by means of a certain system of vectorsR+ = {α} in V (the so-called root system):

U =
∑
α∈R+

g2
αv(qα) qα = (α, q) g2

α = κα(κα − 1). (2.2)

The constants satisfy the conditiongα = gβ , if (α, α) = (β, β). Such systems are completely
integrable for five types of potential [10]. In this letter we consider only theA2 case with
potentialv(q) = sin−2 q.

3. The Clebsch–Gordan series

In this section, we recall the main results of [4] and specialize them to theA2 case. The
Schr̈odinger equation for this quantum system withv(q) = sin−2 q has the form

H9κ = E(κ)9κ H = −12+ U(q1, q2, q3) 12 =
3∑

j=1

∂2

∂q2
j

(3.1)

with

U(q1, q2, q3) = κ(κ − 1)
(
sin−2(q1− q2)+ sin−2(q2− q3)+ sin−2(q3− q1)

)
. (3.2)

The ground-state wavefunction and its energy are

9κ
0 (q) =

( 3∏
j<k

sin(qj − qk)
)κ

E0(κ) = 8κ2. (3.3)

Substituting9κ
λ = 8κ

λ9
κ
0 in (3.1) we obtain

−1κ8κ
λ = ελ(κ)8κ

λ 1κ = 12+1κ
1 ελ(κ) = Eλ(κ)− E0(κ). (3.4)

† We use the name of Jack polynomials, although, strictly speaking, they are slightly different from those introduced
by Jack [13]. Another possible denomination is generalized Gegenbauer polynomials [15].
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Here the operator1κ
1 takes the form

1κ
1 = κ

3∑
j<k

cot(qj − qk)
(
∂

∂qj
− ∂

∂qk

)
. (3.5)

It is easy to see that1κ leaves invariant the set of symmetric polynomials in variables
exp(2iqj ). Such polynomialsmλ are labelled by anSU(3) highest weightλ = mλ1+ nλ2,
with m, n non-negative integers andλ1,2 the two fundamental weights. In general,

8κ
λ =

∑
P+3µ6λ

C
µ
λ (κ)mµ mµ =

∑
λ′∈W ·µ

e2i(q,λ′) (3.6)

whereP+ denotes the cone of dominant weights,W the Weyl group, andCµλ (κ) are some
constants, taking care of the wavefunction normalization.

The most remarkable result of [4] is that the product of two wavefunctions is a finite
sum of wavefunctions (a sort ofκ-deformed Clebsch–Gordan series)

8κ
µ8

κ
λ =

∑
ν∈Dµ(λ)

Cνµλ(κ)8
κ
ν . (3.7)

In this equation,Dµ(λ) = (Dµ + λ) ∩ P+, whereDµ is the weight diagram of the
representation with highest weightµ.

Since8κ
µ are symmetric functions of exp(2iqj ), it is convenient to work with a new set

of variables

z1 = e2iq1 + e2iq2 + e2iq3 z2 = e2i(q1+q2) + e2i(q2+q3) + e2i(q3+q1) z3 = e2i(q1+q2+q3).

(3.8)

As we are in the centre-of-mass frame (
∑

i pi = 0), the wavefunctions depend on two
variables only, which we choose to bez1 and z2 (it is consistent to setz3 = 1). In these
variables, and up to a normalization factor,1κ reads (∂i = ∂/∂zi):
1κ = (z2

1 − 3z2)∂
2
1 + (z2

2 − 3z1)∂
2
2 + (z1z2− 9)∂1∂2+ (3κ + 1)(z1∂1+ z2∂2). (3.9)

Its eigenvalues are

εm,n(κ) = m2+ n2+mn+ 3κ(m+ n). (3.10)

For the rest of this letter, we will use a different normalization for the polynomials8κ
λ

and denote them byP κm,n. In [4, 22] their general structure was outlined

P κm,n(z1, z2) =
∑
p,q

Cp,qm,n(κ)z
p

1z
q

2 = zm1 zn2 + lower terms (3.11)

with p + q 6 m+ n andp − q ≡ m− n(mod 3). The first polynomials are easy to find:

P κ0,0 = 1 P κ1,0 = z1 P κ0,1 = z2. (3.12)

In [4] simple instances of (3.7) forP κλ = P κ1,0 or P κ0,1 were given

z1P
κ
m,n = P κm+1,n + am,n(κ)P κm,n−1+ cm(κ)P κm−1,n+1 (3.13)

z2P
κ
m,n = P κm,n+1+ ãm,n(κ)P κm−1,n + cn(κ)P κm+1,n−1 (3.14)

where

am,n(κ) = ãn,m(κ) = cn(κ)cm+n+κ(κ) (3.15)

cm(κ) = e(m)

e(κ +m) e(m) = m

m− 1+ κ . (3.16)

In the next section, we shall build the polynomials with the help of these recursion relations.
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4. Results

As a first step towards the complete solution, it is instructive to compute the simplerP κm,0
polynomials, which were considered first by Jack [13] (see also [23]). Combining the
recursion relations (3.13) and (3.14), we obtain

P κm+1,0 = z1P
κ
m,0− cmz2P

κ
m−1,0+ dmP κm−2,0 (4.1)

wheredm = cmcm−1cm−1+κ (for brevity we drop theκ dependence incm). From the general
structure (3.11) ofP κm,n, it is natural to decomposeP κm,0 as

P κm,0 =
[ m3 ]∑
l=0

zm−3l
1 Q

κ,m
l (y) y = z2

z2
1

(4.2)

Q
κ,m
l (y) being a polynomial iny. Then the recursion relation (4.1) implies that theseQ

κ,m
l

satisfy

Q
κ,m+1
0 (y) = Qκ,m

0 (y)− cmyQκ,m−1
0 (y) (4.3)

Q
κ,m+1
l (y) = Qκ,m

l (y)− cmyQκ,m−1
l (y)+ dmQκ,m−1

l−1 (y). (4.4)

The first relation involves onlyQκ,m
l with l = 0 and can be readily solved with the help of

the Gegenbauer polynomialsCκm(t) as

Q
κ,m
0 (y) =

[ m2 ]∑
i=0

(−1)i

i!

m!

(m− 2i)!

0(κ +m− i)
0(κ +m) yi

= ym/2

e(m+ 1)−m
Cκm

(
1

2
√
y

)
(4.5)

where 1/e(x+ 1)−i denotes the product† e(x)e(x− 1) . . . e(x− i+ 1). For higherl, we try
the following ansatz

Q
κ,m
l (y) = αml Qκ+l,m−3l

0 (y) (4.6)

which solves (4.4), provided that the constantsαml are

αml =
m!

l!(m− 3l)!

0(κ +m− 2l)

0(κ +m) . (4.7)

Therefore, we conclude that the polynomialsP κm,0(z1, z2) are just some particular linear
combinations of the one-variable Gegenbauer polynomials. One obtains the other set of
polynomialsP κ0,n using the relationP κ0,n(z1, z2) = P κn,0(z2, z1).

The recursion relation (4.1) is also very useful to derive a generating function for the
P κm,0 polynomials. Indeed, plugging in (4.1) the following function

Gκ
0(u) =

∞∑
m=0

e(m+ 1)−mumP κm,0 (4.8)

we obtain the first-order differential equation, easily solved by

Gκ
0(u) = (1− z1u+ z2u

2− u3)−κ . (4.9)

This generating function is perfectly suited to prove some basic properties of these
polynomials, such as

∂1P
κ
m,0 = mPκ+1

m−1,0 ∂2P
κ
m,0 = −

m(m− 1)

κ +m− 1
P κ+1
m−2,0. (4.10)

† Similarly, for positive i, e(x)i = e(x)e(x + 1) . . . e(x + i − 1). This is a functional generalization of the
Pochhammer symbol(x)i = 0(x + i)/0(x), i ∈ Z used later in the text.
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We will build the general polynomials with the help of theP κm,0, using the property

P κm,0P
κ
0,n =

min(m,n)∑
i=0

γ im,nP
κ
m−i,n−i . (4.11)

This is a consequence of equation (3.7), with the notable difference that the sum on the
right-hand side is over a restricted domain (actually, it parallels exactly theSU(3) Clebsch–
Gordan decomposition).

For the proof, we proceed by iteration, assuming that (4.11) is valid up to(m, n). Then,
with repeated use of (3.13) and (3.14), we obtain

P κm,0P
κ
0,n+1 =

min(m,n+1)∑
i=0

γ im,n+1P
κ
m−i,n+1−i + cnδim,n+1P

κ
m+1−i,n−1−i (4.12)

where we defined

γ im,n+1 = γ im,n + ãm−i+1,n−i+1γ
i−1
m,n − cncm−i+1γ

i−1
m,n−1 (4.13)

δim,n+1 = c−1
n cn−iγ

i
m,n − γ im,n−1− am−i+1,n−iγ i−1

m,n−1+ cn−1cκ+n−1γ
i−1
m,n−2. (4.14)

From the polynomials normalization, we already know thatγ 0
m,n = 1, and after a

straightforward computation, the solution to (4.13) is found to be

γ im,n =
e(2κ +m+ n+ 1− i)−i
e(1)ie(m+ 1)−ie(n+ 1)−i

(4.15)

which implies thatδim,n+1 = 0 in (4.14).
The constructive aspect of this formula lies in its inverted form.

Theorem 1.The Jack polynomialsP κm,n of typeA2 are given by the formula

P κm,n =
min(m,n)∑
i=0

βim,nP
κ
m−i,0P

κ
0,n−i (4.16)

where the constants are

βim,n =
(−1)i

i!(κ + 1)−i

3κ +m+ n− 2i

3κ +m+ n− i
(κ +m)−i (κ + n)−i (2κ +m+ n)−i
(m+ 1)−i (n+ 1)−i (3κ +m+ n)−i . (4.17)

Note that theβim,n are obtained using the relation

βim,n = −
i−1∑
j=0

βjm,nγ
i−j
m−j,n−j . (4.18)

From this theorem, we see that the construction of a general polynomialP κm,n is similar
to the construction ofSU(3) representations from tensor products of the two fundamental
representations.

Likewise, one can explicitly study other types of decompositions, such as

P κm,0P
κ
n,0 =

min(m,n)∑
i=0

γ̃ im,nP
κ
m+n−2i,i (4.19)

with the coefficients

γ̃ im,n =
e(κ +m+ n+ 1− i)−i
e(1)ie(m+ 1)−ie(n+ 1)−i

. (4.20)

The proof is essentially the same as for (4.11). Here again, the summation on the right-hand
side is on a restricted domain, compared with (3.7).
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Theorem 2.There is another formula for polynomialsP κm,n atm > n:

γ̃ nm+n,nP
κ
m,n =

n∑
i=0

β̃imnP
κ
m+n+i,0P

κ
n−i,0 (4.21)

where

β̃im,n =
(−1)i

i!(κ + 1)−i

m+ 2i

m

(κ +m+ n)i
(m+ n+ 1)i

(m)i

(κ +m+ 1)i

(κ + n)−i
(n+ 1)−i

. (4.22)

This theorem is a simple consequence of (4.19), and the coefficientsβ̃im,n are found
using

β̃im,n = −
(
γ̃ n−im+n+i,n−i

)−1
i−1∑
j=0

β̃jm,nγ̃
n−i
m+n+j,n−j . (4.23)

As a by-product of (4.16), specializing it to the caseκ = 1, whereP κm,n are nothing but
the SU(3) characters, we obtain

P 1
m,n = P 1

m,0P
1
0,n − P 1

m−1,0P
1
0,n−1. (4.24)

From this we easily deduce the generating function forSU(3) characters (see for example,
[24])

G1(u, v) =
∞∑

m,n=0

umvnP 1
m,n =

1− uv
(1− z1u+ z2u2− u3)(1− z2v + z1v2− v3)

. (4.25)

5. Conclusion

In this letter we have solved the quantum three-body Calogero–Sutherland model exactly.
The wavefunctions are known to be Jack polynomials, and our construction gives explicit
expansion of them. They appear to be constructed with Gegenbauer polynomials.

Since the functions correspond, for special values ofκ, to zonal spherical polynomials,
we have obtained, as a by-product, explicit expression for zonal spherical functions of the
symmetric spacesSU(3)/SO(3) (κ = 1

2), SU(3) × SU(3)/SU(3) (κ = 1), SU(6)/Sp(3)
(κ = 2), andE6(−78)/F4 (κ = 4).

Due to the algebraic framework, many aspects of this work can be applied to theN -body
model, for instance equation (4.11) is easy to generalize to theSU(N) case.

Let us also remark that preliminary investigations indicate that relations similar to (3.13)
hold in the case of the Macdonald polynomials.

AP would like to thank Professor P Sorba and the Laboratoire de Physique Théorique
LAPTH for hospitality.

Appendix. Explicit expressions forPκ
mn with m+ n 6 4

In addition to those already given in the main text, we list here the first few polynomials
P κm,n with m+ n 6 4:

P κ2,0 = z2
1 −

2

κ + 1
z2
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P κ1,1 = z1z2− 3

2κ + 1

P κ3,0 = z3
1 −

6

κ + 2
z1z2+ 6

(κ + 1)(κ + 2)

P κ2,1 = z2
1z2− 2

κ + 1
z2

2 −
3κ + 1

(κ + 1)2
z1

P κ4,0 = z4
1 −

12

κ + 3
z2

1z2+ 12

(κ + 2)(κ + 3)
z2

2 +
24

(κ + 2)(κ + 3)
z1

P κ3,1 = z3
1z2− 6

κ + 2
z1z

2
2 −

3(3κ + 2)

(κ + 2)(2κ + 3)
z2

1 +
30

(κ + 2)(2κ + 3)
z2

P κ2,2 = z2
1z

2
2 −

2

κ + 1
(z3

1 + z3
2)−

12(κ − 1)

(κ + 1)(2κ + 3)
z1z2+ 9(κ − 1)

(κ + 1)2(2κ + 3)
.
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